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Introduction  
 We used a commercial transparent adhesive tape 
(Scotch 600 from 3M. Tape width b is 1.9 mm),3 applied 
on the adherent surface a room temperature with a com-
mercial 2 kg (4.5 lb) roller (diameter 9.5 cm and width 4.5 
cm, from ChemInstruments). The peel test was performed 
within a few minutes after application to the adherent. 

 
 The peel test is one of the most common techniques to 
investigate the properties of pressure sensitive adhesives 
(PSA).1 As the demand increases2 for combinatorial tools 
to rapidly test material performance, designing a high 
throughput peel test is a useful improvement of this well-
established technique. A simple way to achieve this pur-
pose consists of carrying out simultaneous parallel tests 
(using multiple load cells), and a gradient sample or meas-
urement conditions along the peeling direction. 

 We have investigated two model adherent surfaces. 
The first, which function is reference, consists of a regular 
glass slide (75 mm length), initially covered4 with a 
grafted monolayer of a short alkyl silane chain of             
n-octadecyldimethylchlorosilane (ODS). It exhibits a ho-
mogeneous low surface energy of 26 mJ/m2. A second 
surface was prepared by symmetric UVO gradient expo-
sure of the reference surface and washed with toluene, as 
described elsewhere.5 As the exposure time increases from 
the edge of the sample (Figure 2, top), oxygenated func-
tional groups are developed in the ODS layer, increasing 
the polarity of the surface, thus its thermodynamic energy. 
The gradient pattern in exposure time generates a gradient 
in surface energy.5 

 A combinatorial peel test could, however, compromise 
the necessary statistical accuracy required for a single 
force measurement. The purpose of this work is to explore 
the possibility of using gradient multivariant samples in a 
peel experiment. We investigate the potential and limita-
tions of this high throughput peel test by probing different 
parameters (adherent roughness and surface energy, peel 
rate, adhesive and backing thickness). We focus on the 
mechanisms which control adhesive debonding, in particu-
lar relating to the effects of the adherent surface energy on 
the peel force and mechanism.  

  
Experimental 

 
 We perform 90º peel experiments with a custom de-
signed apparatus (Figure 1). This setup allows the meas-
urement of both the force F (resolution is 1 mN) applied 
during the peel of the tape at a given rate (100 µm/s in the 
experiments presented here) and images of the contact 
edge through the transparent adherent. 
 

 
Figure 1. Experimental setup (left image) used fo
experiments. The micrograph on the right depict
morphology (peel direction is indicated by the arr
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Figure 2. Evolution of the peel force F/b with the edge 
displacement d during the peeling of the adhesive tape 
from a glass slide grafted with ODS. The gray curve corre-
sponds to a homogeneous surface, the black one to the 
surface with energy gradients. Top: schematic of the UV 
exposure time associated with the black curve. 

 
Results and Discussion 

 
 The evolution of the force F (divided by the tape 
width b) is shown in Figure 2 for both prepared samples. 
In the case of a homogeneous ODS surface (gray curve), 
the force is constant at a value of 26 N/m ± 1 N/m (error 
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